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Abstract--The influence of an axial convective motion caused by radially nonuniform heat sources on the 
stability of a Couette flow between cylinders, if the inner one is rotating with constant angular velocity and 
the outer one is fixed, is studied in this paper. The axisymmetric and the first few asymmetric modes are 
studied. It is found that, for wide gaps, there exist regions of stabilization of Couette flow. These regions, 

which correspond to asymmetric modes, decrease as the Prandtl number grows. 

1. INTRODUCTION 

The stability of Couette flow between two rotating 
cylinders is a classical hydrodynamic problem which 
has attracted the attention of many researchers since 
the famous paper by Taylor [1]. The basic stability 
results are surveye,:l in [2, 3]. Recently, this problem 
has been investigated under additional factors such as 
compressibility of medium, vertical displacement of 
cylinder walls, axial isothermal flow in the vertical 
direction, and radially nonuniform temperature dis- 
tribution in the fluid [4-11] in view of applications 
to complicated convective heat transfer in thermal 
systems such as ga:~ turbines and rotating machinery, 
and new applicatiens such as crystal growth [12] and 
the design of photochemical reactors for the puri- 
fication of industrial waste water [8]. 

A flow between rotating cylinders under radial heat- 
ing of the fluid is one example of nonisothermal 
Couette flow. The stability of such flow was initially 
studied in [13-15], without taking the vertical com- 
ponent of the base velocity of the fluid caused by a 
nonuniform temperature distribution through the 
fluid into account. However, experimental studies in 
[16] indicated that the motion in the vertical direction 
has an essential influence on the stability and must be 
taken into account. 

A theoretical analysis of the stability of Couette 
flow under radial heating, where the vertical com- 
ponent of the base' velocity is taken into account, is 

t Author to whom correspondence should be addressed. 

presented in [9], where it is shown that, at certain 
values of the parameters, a decrease of the Taylor 
number leads to a sequence of transitions from the 
axisymmetric mode to asymmetric modes with an 
increasing number of azimuthal modes. Computa- 
tional results in [9] compare satisfactorily with exper- 
iments [16]. 

It is known from the analysis of isothermal Couette 
flow that the finite length of the cylinders greatly 
influences the flow structure. Nonisothermal Couette 
flow between two rotating cylinders of finite length, 
which is affected by the interaction of the density 
gradient induced by a temperature difference, with a 
centrifugal force, is studied in [17, 18], where the rela- 
tive influence of the buoyancy and rotational effects 
is investigated. 

Nonisothermal flow with internal heat sources is 
another important example for the applications [19, 
20]. Such models are used for the analysis of photo- 
chemical reactors [21] and in the theory of thermal 
ignition [22] where an exothermal chemical reaction 
can lead to convective instability. In some cases (see 
[23]), nonuniform internal heat sources have to be 
taken into account in experimental measurements 
with a laser-Doppler velocimeter. It was found in [23] 
that the instability of an unsteady circular Couette 
flow generated by monotonic time-dependent motions 
of the inner cylinder was initiated near the location 
where the laser beams penetrated the flow field. Thus, 
laser beams affect the stability of the flow and this 
effect was eliminated in [23] by the experiment design. 

A theoretical investigation of the stability of a con- 
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NOMENCLATURE 

c = ..~(~.)/(kGrvomax) phase velocity 
Cp constant heat capacity 
9 acceleration due to gravity 
Gr = gflQohS/(2v2XpCp) Grashofnumber 
h = ( R 2 - R j ) / 2  measure of length 
hZ/v m e a s u r e  of time 
k wave number in vertical direction 
n wave number in azimuthal direction 
Pr  = v /x  Prandtl number 
Q volumic density of heat sources 
Q0 constant 
Qoh2/(2XpCp) measure of temperature 
r radial coordinate 
rl = rl/(1 - q) dimensionless radius of inner 

cylinder 
r2 = 1/(1 - q) dimensionless radius of outer 

cylinder 
R 1 radius of inner cylinder 
R2 radius of outer cylinder 
S = ogR~/uo parameter 
t time 
T temperature 

Ta = 64o92haq4/(v2(1 - r/2)) Taylor number 
u o = gf lOoh4/(2vxpco) measure of vertical 

and radial velocity components 
v0~x maximum value of vertical component 

of base velocity 
/)r radial velocity component 
Vz vertical velocity component 
v~ azimuthal velocity component 
z vertical coordinate. 

Greek symbols 
parameter characterizing the 
nonuniformity of heat sources 

fl thermal expansion coefficient 
11 = R I / R 2  radius ratio 
x thermal conductivity 
2 eigenvalue 
v kinematic viscosity 
p fluid density 
q~ azimuthal coordinate 
o9 angular velocity of inner cylinder. 

vective motion caused by internal heat sources uni- 
formly, or nonuniformly, distributed through the fluid 
was done in [24-28]. The influence of an axial con- 
vective motion, caused by uniformly distributed 
internal heat sources, on the stability of a circular 
Couette flow between two rotating cylinders is studied 
in [29], where Ta should be corrected as per the remark 
in parentheses after (20) below. 

In the present paper, the stability of a Couette flow 
with nonuniform heat sources is studied in the region 
between an inner rotating cylinder and an outer cylin- 
der at rest. Both the axisymmetric (toroidal) and the 
asymmetric (spiral) modes are studied for different 
values of the free parameters of the problem. 

2. THE MATHEMATICAL ANALYSIS 

We consider an infinitely long vertical annular 
channel of radii Ri and Rz(R]  < R2). The inner cylin- 
der rotates with con§tant angular velocity, o9, and the 
outer cylinder is at rest. The channel is filled with a 
viscous incompressible fluid. The temperature of both 
cylinders is constant and equal. We introduce a system 
of cylindrical polar coordinates (P, tp, z') with the origin 
on the axis of the cylinders. The ~-axis is directed 
upwards (opposite to gravity) and coincides with the 
cylinders' axes. The following dimensionless variables 
(where tilde means a variable with dimension) are 
used : 

~v ~ 
~=~ t=  F ~,= gf lQoh 4 / ( 2vxpcp)  

vz gflQoh4/(2vXpCp) v~ o9Rl 

p 
T -  p -  

Qoh2 / (2xpcp)  yf lQoh3 /(2xcp) 

where h = (R 2 -  RO/2 .  
Heat sources of volume density 

Q(r) = Qo e-'(r-rl) (1) 

are distributed within the fluid, where Q0 and ct are 
constants, rl ~< r ~< r2 and rl and r2 are the dimen- 
sionless radii of the cylinders. 

The distribution (1) may be caused by a radially 
radiant source, uniform in the azimuthal and axial 
directions, inside the inner cylinder. A distribution 
similar to (1) is used to describe processes in photo- 
chemical reactors (see e.g. [21]). 

In dimensionless variables, the equations of thermal 
convection in the Boussinesq approximation are 

OU r // 0U r 0V r 0U r - -  S 2 ~ )  ~ ..}_ a r ~ vr _~.~r .~ S ~ ~_~ _]_ Vz ~z v2 

2 dv~ 
- ePar ~V2~r--~--ST~ (2) 

1 op 2 ~?v~ 
- + s v 2 v ~ - s  ~ + (3) 

r a~o r 2 ~ 
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OVz / Ovz Ova'\ 
) Gr~ v~ ~r ,v,, OG 

0p +VEG + T 
0z 

OT [ OT v~ OT 
~ +Gr~v~r + S ~ - ~  +G ~z ~ 

where 

(4) 

1 2 2 e _ ~ ( ~ _ r ~  ) 
= ~r v T+ Vr (5) 

OVr ! OVa° _~ 01)z 
~-r + ~ + S  ~ o z = O  (6) 

0 2 1 0 1 0 2 0 2 
v2 = - - - + 7  - - + - -  

0r: ~r + ~ & o  2 0z ~" 

Equations (2)-(6) have a steady solution of the 
following form : 

vT=0 v~=  Vo(r) vz= I41o(r) 

T= To(r) po(r,z) =pol(z)+Po2(r). (7) 

In practice, we may assume that the channel is closed 
so that the fluid flux is equal to zero through any 
cross-section of the channel, that is, 

I r2 r Wo (r) dr = 0. (8) 
. r t  

The boundary conditions are 

Vol,=r. = 1, V0lr=r z = 0, Wo[r=rt = O, 

T01~=~,= 0, i =  1,2.  (9) 

The solution to equations (2)-(9) has the form 

To(r) = CI lnr+C2+A(r)+B(r) (10) 

rlr~ r l r  
Vo(r) -- - -  ( l l )  

(r~--~,~)~ ~--r,~ 

Wo (r) = Ca In r + Ca + C5 r 2 

+ ~ln [G l n ~ + C E + A ( O l - 2 ~ l n ~ e  -~¢-r0 
i 

(eln_  + r -e X 2 r ~ ] j d ~  (12) 

where the constanls C~-C5 and the functions A (r) and 
B(r) are given in [28]. 

The formula for the pressure is omitted since it is 
not used in the sequel. 

We consider the stability of the flow (7), (10)-(12) 
by the method of  normal perturbations. The solutions 
to problem (2)-(6) in a neighborhood of the base flow 
(10)-(12) are sought in the form 

I o r ]lv r,I 
vz = I W°(r) l +/w(r)/ 

I To(r) I I°(r)l 
Lp0 (r, z) / L q(r) 1 

e - 2t + ikz + imp 

(13) 

where n = 0 and n # 0 correspond to toroidal and 
spiral disturbances, respectively. Substituting equa- 
tion (13) into (2)-(6) and linearizing the equations in 
a neighborhood of the base flow (7), (10)-(12), we 
obtain the following system of equations 

/ V0 22 \ - 2u+ Gr~ S~-  inu+ Woiku- S rVVo ) 

dq u 2 
- dr bLu-~ - - inS -~v  (14) 

- 2 v + G r ( u ~  Vo Woikv+ u + S--~- inv + r 1Io] 

1 inq v in2 
- S r + L v - ~ + ~ r ~ U  (15) 

-2w+Gr(uW'o+S~inw+ Woikw) 

= --ikq+Lw+O (16) 

, v0 -2PrO+GrPr(uTo + S-~-inO+ WoikO) = LO 

(17) 

u +sinV + u" + - ikw = 0 (18) 
r r 

. . . .  k 2 ' 

The boundary value problem given by equations 
(14)-(19) is solved by the pseudospectral collocation 
method. The details of the numerical procedure are 
given in [27, 30]. 

The stability of the flow (7), (10)-(12) is determined 
by the eigenvalues, 2m = am+ibm, of problem (14)- 
(19). If  am > 0 for all m, then the flow is stable, and if 
a m < 0, for at least one m, then the flow is unstable. 

Two IMSL routines were used, namely : QDAG to 
compute the integrals in equations (10) and (12), and 
GVLCG to solve the generalized eigenvalue problem 
which is obtained from equations (14)-(19) after dis- 
cretization. 

The computer code was tested by comparing our 

where 

d 2 1 d n 2 

L .'= dr-- S + r dr r 2 

The boundary conditions are 

Ulr=r, = 0  Vlr=r, = 0  Wlr=ri = 0  01r=r, = 0 

i =  1,2. (19) 
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results with results of  other authors in the following 
two particular cases : 

(1) isothermal Couette flow [15] and 
(2) pure convection with internal heat generation 

without rotation [25]. 

In the first case, the computed critical Taylor  numbers 
for different values of  r / =  RI/R2, from 0.I to 0.95, 
differ by at most 0.08% from the values given in [15]. 
In the second case, the computed critical Grashof  
numbers for r / - -  0.95 differ by at most 0.3% from the 
values given in [25]. 

3. NUMERICAL RESULTS AND DISCUSSION 
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Computat ional  results are given in terms of  the 
Taylor number 

64ooZh4r/4 
Ta - - -  (20) 

v2(1 - t /2 )  

for an easy comparison with the results for the iso- 
thermal case [15] (in the definition of  Ta given in 
[29], p. 3139, the dimensionless number R 2 in the 
numerator  should be changed to R 4, which cor- 
responds to ?/4 in the present paper). The parameter S 
is related to Ta and Gr by the formula 

1 / { l + " T a ~  (21) 
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Fig. 1. Neutral stability curves: (a) for n = 0 with Pr = 1, 
q = 0.7, ~ = 0.5 and four values of Ta; (b) for n = 2 with 

Pr = 5, r /= 0.4, c~ = 2 and Ta = O. 

Computat ions were done for two values of  the radius 
ratio, namely r / =  0.7 and t / =  0.4, three values of  the 
parameter ~ (which describes the nonuniformity of  
the heat sources), namely ~ = 0, 0.5, 2, and three 
values of  the Prandtl number, namely Pr = 1, 5, 20, 
since the importance of  the Prandtl number on sta- 
bility characteristics is known [25, 31]. The axi- 
symmetric and the first two asymmetric modes, with 
azimuthal wave numbers n = 0, 1,2, respectively, were 
studied. In one case, comparison is made with the 
modes n = 3 and 4. 

It is noted that the shape of  the neutral stability 
curves changes considerably if some parameters of  the 
problem are changed. We consider several samples of  
neutral stability curves. 

Figure 1 (a) shows four curves which correspond to 
the axisymmetric mode (n = 0) with ~ = 0.5, Pr = 1, 
t / =  0.7. Each curve has only one minimum. The coor- 
dinates of  the minimum correspond to the critical 
values of  the parameters Gr and k, respectively. Com- 
putations show that rotation has a destabilizing effect 
on the flow; thus the critical Grashof  number 
decreases as the Taylor number grows. Instability in 
this case is of  hydrodynamical nature (sometimes 
called thermal-shear instability [31]) since the role of  
thermal factors is relatively small for small Prandtl 
numbers and the energy is transmitted to the per- 
turbations basically from the main flow. 

When r / =  0.7, it is known that the classical iso- 
thermal Couette flow is unstable at k~= 1.57, 

Tac = 2186 (see [15]). In this case, Grr = 0; thus the 
point A : (kc, Grr, Tac) = (1.57, 0, 2186) lies on the k- 
axis in the (k, Gr)-plane. One would expect that if  the 
Taylor number grew from 0 to Tao then the Grashof  
number would decrease monotonically to 0 and the 
neutral curve at Ta = Tar would be tangent to the k- 
axis at A. We shall see, later, that such a continuous 
transition to isothermal Couette flow occurs at larger 
Prandtl  numbers. However,  for the parameter values 
used in Fig. 1 (a), our computat ions show that the 
limit position of  the neutral stability curve is reached 
as Ta increases to the limiting value Ta¢ = 2186; but 
Gr decreases only to the limiting value Gr,  = 1147.9, 
and not to zero. 

Hence, the stability boundary can be described as 
follows. If  Ta <Tac,  stability is determined by the 
convective mode associated with the convective flow 
in the vertical direction [see the curves in Fig. 1 (a)]. 
When Ta > Tar, the flow is unstable with respect to 
the pure centrifugal mode for any Gr > 0. This situ- 
ation resembles the uniform heat generation treated 
in detail in [29]. Therefore a small increase of  the 
Taylor number beyond Ta = Tac produces a ' jump'  
from point  P :  (k, ,  Gr,, Tac) = (1.31, 1147.9, 2186) to 
point A, that is, a discontinuous transition to iso- 
thermal Couette flow. We note that such abrupt  tran- 
sition from one regime to another is observed in [32] 
for Pr = 1 where convection is studied in a region 
between two horizontal rotating cylinders. It is found 
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in [32] that if the Rayleigh number  exceeds some value 
then hysteresis effects are observed, that is, the charac- 
teristics of the flow depend considerably on the direc- 
tion in which the parameters vary. 

Figure 1 (b) shows a typical curve corresponding to 
the case n = 2, Pr = 5, r / =  0.4, e = 2, Ta = 0. This 
curve has two minima (points B and C) and one cusp. 
In general, the curJe can have a cusp or a closed loop 
(or even several closed loops; see, for example, [25, 
26]). An elegant physical interpretation of the occur- 
rence of a cusp or iLoops as the Prandtl  number  grows 
is given in [25]. For small Prandtl  numbers,  the neutral 
stability curves have the typical shape shown in Fig. 
1 (a). These curves undergo a continuous deformation 
as Pr grows. Such a resulting curve is shown in Fig. 
l(b) for Pr = 5. 

The right min imum (point B) corresponds to ther- 
mal-shear instability, that is, instability due to the 
interaction of convective flows moving in opposite 
directions. Computat ions show that the position of B 
does not change considerably as the Prandtl  number  
grows; hence, this min imum can be associated with 
thermal-shear instability. However, a second mini- 

mum (point C) appears as the result of  deformation 
of the neutral curve ; in this case C corresponds to the 
absolute min imum of the neutral stability curve. This 
min imum is shifted to the region of smaller k and the 
critical Grashof  number  decreases. Perturbations in 
the form of thermal running waves moving down- 
stream with high phase velocity correspond to the 
lower part of the neutral curve in Fig. 1 (b) ; hence, 
this min imum can be associated with thermal-buoyant  
instability. Therefore, depending on the Prandtl  
number,  two kinds of instability can occur : thermal- 
shear instability and the instability in the form of 
thermal running waves (thermal-buoyant instability). 

If  the Taylor number  changes, our computations 
show that, in some cases, a deformation of a neutral 
curve takes place in the direction indicated by the 
arrows in Fig. 1 (b). This explains ' jump'  transitions 
to different wave numbers (see e.g. [29] and the results 
given below). Physically, this means that the rotating 
cells change vertical size. Note that this phenomenon 
was also observed for Couette flow with radial heating 
[9]. 

Figure 2 shows stability curves for the axisymmetric 
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Fig. 2. Stability diagrams with r/= 0.7 for n = 0, 1, 2, at Pr = 1 and (a) ct = 0, (b) ct = 0.5, (c) ct = 2, and 
at Pr = 5 and (d) ct = 0, (e) ct = 0.5, (f) ct = 2. 
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(n = 0) and  the first two spiral (n = 1, 2) modes  in the 
case t / =  0.7 and  ~z = 0, 0.5, 2. 

In Figs. 2(a)- (c) ,  Pr = 1. The case a = 0, studied in 
[29], cor responds  to un i fo rm heat  generat ion,  and  the 
results for this case are presented here and  below for 
compar i son ' s  sake only. As seen f rom the figure, the 
axisymmetric mode  is the mos t  unstable  mode  for 
ct = 0 and  ct = 0.5. Moreover ,  a d iscont inuous  t ran-  
sition to i sothermal  Couet te  flow occurs at  Tac = 2186 
indicated by the dashed hor izonta l  lines. 

For  a = 2, Fig. 2(c) shows tha t  the flow stabili ty is 
de termined by the concurrence  of  the axisymmetric  
and  the first asymmetr ic  modes. The flow is unstable  
with respect to the axisymmetric  mode  for small and  
large Taylor  numbers ,  while the first asymmetr ic  mode  
is the mos t  unstable  one for modera te  values of  the 
Taylor  number .  In this figure, these two modes  are 
a lmost  indist inguishable.  Note  that ,  in the case of  
radial  heating,  similar t ransi t ions  f rom cellular (n = 0) 
to spiral flow and  then, again, to axisymmetric  cellular 
flow, were observed experimental ly in [18] for cylin- 
ders of  finite length in the case where the G r a s h o f  
n u m b e r  was monotonica l ly  increasing. 

In Figs. 2(d)-(f) ,  Pr = 5. In the cases ~ = 0 and  
c~ = 0.5, the sources are uniformly,  or only slightly 
nonuniformly,  d is t r ibuted;  thus  the axisymmetric  
mode  is the mos t  unstable  one. Moreover ,  a con- 
t inuous t rans i t ion to i sothermal  Couet te  flow takes 
place in these two cases. 

In the case c~ = 2 [Fig. 2(f)], the mode  n = 2 is 
the mos t  unstable  one at  Ta = 0. Compu ta t i ons  show 
that ,  wi thout  rota t ion,  instabil i ty appears  in the form 
of  a spiral vortex moving  downst ream.  Note  tha t  
asymmetr ic  instabil i ty in a vertical cylinder with  uni- 
form heat  generat ion was observed experimental ly in 
[33]. 

Since, in the case Ta = 0, the critical G r a s h o f  num-  
bers are close to each other,  we present,  in the top 
par t  of  Table  1, the cor responding  critical values of  k, 
Gr and c for n = 0, 1, 2. The  critical G r a s h o f  numbers  
for the modes  n = 3 and  n = 4 are, respectively, 
Gr = 2001.8 and  Gr = 2149.7, which are larger t han  
the one for the mode  n = 2. I f  the Taylor  n u m b e r  
increases, there is a fast t rans i t ion to the axisymmetric  
mode,  and  a fur ther  increase of  the Taylor  n u m b e r  up  
to the critical value Tao, in the isothermal  case, does 

not  change the form of  ins tab i l i ty - - i t  remains  axi- 
symmetric.  

Figures 3(a)- (c)  show stability curves for the larger 
Prandt l  number ,  Pr = 20 and  I1 = 0.7. Again,  for 
c~ = 0, 0.5 and  2, the axisymmetric  mode  (n = 0) is the 
mos t  uns table  mode  with a con t inuous  t ransi t ion to 
i sothermal  Couet te  flow. The critical values of  the 
parameters  for the case Ta = 0 are given in the b o t t o m  
par t  of  Table  1. 

Figures 3(d)-(f )  show stability curves for Pr = 1 

and  q = 0.4. In this case, the flow is unstable  with 
respect to axisymmetric  modes  (n = 0), except for very 
small positive values of  Ta in the case ~ = 0.5 where 
the mode  n = 1 is the mos t  uns table  mode.  In this 
exeptional  case, the critical G r a s h o f  numbers  for 
Ta = 0 are 1412.5 and  1413.7 for n = 1 and  n = 0, 
respectively. In these figures, a d iscont inuous  t ran-  
sit ion to i sothermal  Couet te  flow takes place as in 
Figs. 2(a) - (c)  where q = 0.7. 

In Fig. 4, the case Pr = 5 is character ized by the 
concurrence  of  different modes  as ct and  Ta change.  
In the case of  un i fo rm internal  heat  sources, the flow 
is unstable  with  respect to axisymmetric  pe r tu rba t ions  
[Fig. 4(a)]. I f  ~ = 0.5 [Fig. 4(b)] the most  unstable  
mode  is the mode  n = 1 for Ta = 0. This k ind of  
asymmetr ic  instabil i ty occurs for small  positive values 
of  Ta and,  in this case, a t rans i t ion  to the axisymmetric  
mode  takes place. In the case of  s trongly nonun i fo rm 
heat  sources (ct = 2) there is a sequence of  t ransi t ions  
f rom the mos t  unstable  mode  (n = 2) for Ta = 0, to 
the axisymmetric  mode  for large Ta [Fig. 4(c)]. 

Figure 4(d) is a not- to-scale magnif icat ion of  the 
lower lef t -hand par t  of  Fig. 4(c). In order  to determine 
the stability bounda ry  we can draw hor izonta l  lines 
Ta = const,  and  find the poin t  of  intersection,  closest 
to the Ta-axis, of  these lines and  the neutra l  curves 
with n = 0, 1 and  2. Therefore  the stabili ty bounda ry  
of  the flow in the interval  0 < Ta < 23 (the curve DE)  
is de termined by the spiral mode  n = 2; the cor- 
responding  critical G r a s h o f  n u m b e r  varies in the inter- 
val 1774 < Gr < 2168. Then  there is a t rans i t ion to 
the spiral mode  n = 1 (curve E F ) ;  this mode  deter- 
mines the stabili ty bounda ry  in the rectangle 
( 2 1 6 8 < G r < 2 9 8 5 )  x ( 2 3 <  T a < 4 8 4 ) .  Our  com- 
puta t ions  show tha t  the values of  the wave number ,  
k, and  the dimensionless  phase  velocity, c = ,~ 

Table 1. Critical values of k, Gr, c for ~ = 0, 0.5, 2, at Pr = 5 (top) and Pr = 20 (bottom), and modes 
n = 0, 1, 2. In all cases Ta = 0 

~ = 0  ~ = 0 . 5  ~ = 2  
Pr n k Gr c k Gr c k Gr c 

5 0 1.33 262.4 - 1.18 1.19 443.3 - 1.13 0.73 2056.7 -0 .92  
5 1 1.32 264.5 - 1.17 1.18 446.7 - 1.13 0.73 2023.7 -0.93 
5 2 1.31 271.1 -1.17 1.15 457.4 -1.13 0.72 1979.3 --0.94 

20 0 1.37 116.4 -4.33 1.27 193.4 - 1.28 1.10 659.6 - 1.06 
20 1 1.37 117.2 - 1.33 1.26 194.6 - 1.28 1.09 660.4 - 1.06 
20 2 1.32 119.8 -- 1.32 1.24 198.1 - 1.28 1.07 664.3 - 1.06 
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Fig. 3. Stability diagrams for n = 0, 1, 2, at Pr = 20, t /=  0.7 and (a) ct = 0, (b) ct = 0.5, (c) ~ = 2, and at 
Pr = 1, ~/= 0.4 and (d) ~t = 0, (e) ~ = 0.5, (f) ~ = 2. 

(2)/(kGrvomax), where V0rna x is the m a x i m u m  value of  
the vertical c o m p o n e n t  of  the base velocity, are a lmost  
the same at the poin t  E, namely,  k2 = 0 . 5 2 ,  
c2 = - 0 . 7 8 ,  kl = 0.50, c~ = - 0 . 8 0  (the subscripts  2 
and  1 cor respond  to the cases n = 2 and  n = 1, respec- 
tively). I f  the Taylor  n u m b e r  grows, the asymmetr ic  
instabil i ty of  the mode  n = 1 changes to the axi- 
symmetric  one (n = 0) at  the po in t  (Gr, Ta) = (2985, 
484). But, in this case, there is a j u m p  to the axi- 
symmetric  mode,  and  b o t h  the wave n u m b e r  and  the 
phase  velocity change f rom k~ = 0.37, c~ = - 0 . 7 0  to 
k0 = 1.65, co = 0,063. Thus,  if  Ta > 484, spiral insta-  
bility changes to axisyrnmetric s tabi l i ty;  the vertical 
sizes of  the new ro ta t ing  cells suddenly shr ink to a 
vertical size close to the size of  the cells for the case 
of  i sothermal  Taylor  vortices. Moreover ,  the phase  
velocity decreases considerably and  ro ta t ing  cells 
move  slightly in the positive z-direction. 

Figure 5 shows stability curves for Pr = 20 and  
t / =  0.4. These curves resemble the curves of  Fig. 4. 
The  mode  n = 0 of  the flow is unstable  for ~ = 0. 

I f  ~ = 0.5, a t rans i t ion occurs f rom the first asym- 
metric mode  (n =: 1) to the mode  n = 0. 

I f  ct = 2, a t rans i t ion occurs f rom the mode  n = 2 
at  Ta = 0, with  k 2 = 0.77, c2 = - 0 . 8 3 ,  to the mode  
n =  1 at  the poin t  (Gr, Ta)= (761, 29), wi th  
k~ = 0.82, Cl = - 0 . 8 6 .  A fur ther  t rans i t ion  occurs 
f rom the mode  n = 1, with  k~ = 0.80, c~ = - 0 . 8 3 ,  to 
the mode  n = 0 at  the poin t  (Gr, Ta) = (799, 70), wi th  
k0 = 0.95, Co = - 0 . 8 7 .  I f  Pr = 20, the Ta-interval  of  
flow instabil i ty with  respect to  an  asymmetr ic  mode  is 
nar rower  than  in the case Pr = 5 (see Fig. 4). We also 
note  tha t  there is only a small  j ump  in the values of  k 
and  c at  the transi t ion.  

It can be seen f rom Figs. 2-5, that ,  in all cases, 
the axisymmetric  mode  (n = 0) corresponds  to flow 
destabil izat ion (Ta decreases as Gr increases), and,  on  
the o ther  hand,  in m a n y  cases, the asymmetr ic  modes  
(n = 1, 2) cor respond to flow stabi l izat ion (Ta 
increases as Gr increases). F o r  small  P rand t l  number s  
[see, for example, Figs 2(a)-(c)] ,  s tabi l izat ion will no t  
be observed experimental ly : the critical Taylor  num-  
bers for asymmetr ic  modes  are higher  then those  for 
axisymmetric  modes.  However,  an  increase of  the 
Prand t l  n u m b e r  (Pr = 5 and  Pr = 20 in our  com- 
puta t ions)  leads to  the appearance  of  regions of  sta- 
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bilization [see, for example, curve DF in Fig. 4(d)] 
which can be observed experimentally. Moreover, as 
previously mentioned, stabilization of Couette flow 
by radial heating was observed experimentally [16]. 

Stabilization for large a can be explained in the 
following way. According to equation (1), for large 
the density of heat sources decreases rapidly in the 
positive radial direction. In other words, heat sources 
are concentrated near the inner cylinder and the tem- 
perature distribution becomes close to the case of 
radial heating with negative temperature gradient, i.e. 
heated inner cylinder and cooled outer cylinder. This 

Ta (a) ot = 0 
1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

800 

400 

Or 
50 100 150 

ira 

1200 \ 

800 

400 

(b)  cz = 0.5 
. _ _ _ - _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ 

100 200 300 
Gr 

Ta 

1200 

800 

400 

~)  ~ =  2 

500 1000 1500 2000 
Gr 

Fig. 5. Stability diagrams for Pr = 20, ~/= 0.4, n -- 0, 1, 2 ; 
(a) ct = 0, (b) ct = 0.5, (c) ct = 2. 

negative temperature gradient stabilizes the flow since 
the lighter fluid particles near the heated inner cylinder 
have a smaller centrifugal force exerted on them. This 
fact was confirmed for narrow gaps experimentally in 
[14] and theoretically in [17]. 

We have also shown that the region of stabilization 
decreases as the Prandtl  number  increases. This fact 
was also found in [29] but  for very wide gaps ( r /=  0.1). 
Note that asymmetric instabilities and the sta- 
bilization of Couette flow by a positive density gradi- 
ent were also observed experimentally in [34, 35]. 

4. CONCLUSION 

The stability of a flow, between a rotating inner 
cylinder and a stationary outer cylinder, in the pres- 
ence of nonuniformly distributed heat sources, is studied 
in this paper for wide gaps ( , /=  0.7 and ~/= 0.4). It is 
found that if the nonuniformity of the heat sources is 
small (ct = 0.5), the instability is mainly of an axi- 
symmetrical nature and the critical Grashof  number  
decreases as the Taylor number  grows. On the other 
hand, in the case of strongly nonuni form heat sources 
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(~ = 2) there exist regions of  s tabil izat ion of  Couet te  
flow. These regions cor respond to instabil i ty of  asym- 
metric type. As the G r a s h o f  n u m b e r  grows, there 
exists a sequence of  t ransi t ions  f rom the asymmetr ic  
mode  n = 2 to the axisymmetric  mode  n = 0. 
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